FAIR: Filtering of Automatically Induced Rules

Publication
In EACL 2024

The availability of large annotated data can be a critical bottleneck in training machine learning algorithms successfully, especially when applied to diverse domains. Weak supervision offers a promising alternative by accelerating the creation of labeled training data using domainspecific rules. However, it requires users to write a diverse set of high-quality rules to assign labels to the unlabeled data. Automatic Rule Induction (ARI) approaches circumvent this problem by automatically creating rules from features on a small labeled set and filtering a final set of rules from them. In the ARI approach, the crucial step is to filter out a set of a high-quality useful subset of rules from the large set of automatically created rules. In this paper, we propose an algorithm FAIR (Filtering of Automatically Induced Rules) to filter rules from a large number of automatically induced rules using submodular objective functions that account for the collective precision, coverage, and conflicts of the rule set. We experiment with three ARI approaches and five text classification datasets to validate the superior performance of our algorithm with respect to several semi-supervised label aggregation approaches. Further, we show that FAIR achieves statistically significant results in comparison to existing rule-filtering approaches. The source code is available at https://github.com/ayushbits/FAIR-LF-Induction.

Ayush Maheshwari
Ayush Maheshwari
Sr. Solutions Architect at NVIDIA
PhD in NLP/ML from CSE, IITB

My research interests include machine learning, NLP and machine translation.